82 research outputs found

    Multiple imputation by chained equations for systematically and sporadically missing multilevel data

    Get PDF
    In multilevel settings such as individual participant data meta-analysis, a variable is ‘systematically missing’ if it is wholly missing in some clusters and ‘sporadically missing’ if it is partly missing in some clusters. Previously proposed methods to impute incomplete multilevel data handle either systematically or sporadically missing data, but frequently both patterns are observed. We describe a new multiple imputation by chained equations (MICE) algorithm for multilevel data with arbitrary patterns of systematically and sporadically missing variables. The algorithm is described for multilevel normal data but can easily be extended for other variable types. We first propose two methods for imputing a single incomplete variable: an extension of an existing method and a new two-stage method which conveniently allows for heteroscedastic data. We then discuss the difficulties of imputing missing values in several variables in multilevel data using MICE, and show that even the simplest joint multilevel model implies conditional models which involve cluster means and heteroscedasticity. However, a simulation study finds that the proposed methods can be successfully combined in a multilevel MICE procedure, even when cluster means are not included in the imputation models

    Multiple imputation for cause-specific Cox models: assessing methods for estimation and prediction

    Get PDF
    In studies analyzing competing time-to-event outcomes, interest often lies in both estimating the effects of baseline covariates on the cause-specific hazards and predicting cumulative incidence functions. When missing values occur in these baseline covariates, they may be discarded as part of a complete-case analysis or multiply imputed. In the latter case, the imputations may be performed either compatibly with a substantive model pre-specified as a cause-specific Cox model [substantive model compatible fully conditional specification (SMC-FCS)], or approximately so [multivariate imputation by chained equations (MICE)]. In a large simulation study, we assessed the performance of these three different methods in terms of estimating cause-specific regression coefficients and predicting cumulative incidence functions. Concerning regression coefficients, results provide further support for use of SMC-FCS over MICE, particularly when covariate effects are large and the baseline hazards of the competing events are substantially different. Complete-case analysis also shows adequate performance in settings where missingness is not outcome dependent. With regard to cumulative incidence prediction, SMC-FCS and MICE are performed more similarly, as also evidenced in the illustrative analysis of competing outcomes following a hematopoietic stem cell transplantation. The findings are discussed alongside recommendations for practising statisticians.Development and application of statistical models for medical scientific researc

    Propensity score analysis with partially observed covariates: How should multiple imputation be used?

    Get PDF
    Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputation is a natural approach to handle missing data on covariates: covariates are imputed and a propensity score analysis is performed in each imputed dataset to estimate the treatment effect. The treatment effect estimates from each imputed dataset are then combined to obtain an overall estimate. We call this method MIte. However, an alternative approach has been proposed, in which the propensity scores are combined across the imputed datasets (MIps). Therefore, there are remaining uncertainties about how to implement multiple imputation for propensity score analysis: (a) should we apply Rubin's rules to the inverse probability of treatment weighting treatment effect estimates or to the propensity score estimates themselves? (b) does the outcome have to be included in the imputation model? (c) how should we estimate the variance of the inverse probability of treatment weighting estimator after multiple imputation? We studied the consistency and balancing properties of the MIte and MIps estimators and performed a simulation study to empirically assess their performance for the analysis of a binary outcome. We also compared the performance of these methods to complete case analysis and the missingness pattern approach, which uses a different propensity score model for each pattern of missingness, and a third multiple imputation approach in which the propensity score parameters are combined rather than the propensity scores themselves (MIpar). Under a missing at random mechanism, complete case and missingness pattern analyses were biased in most cases for estimating the marginal treatment effect, whereas multiple imputation approaches were approximately unbiased as long as the outcome was included in the imputation model. Only MIte was unbiased in all the studied scenarios and Rubin's rules provided good variance estimates for MIte. The propensity score estimated in the MIte approach showed good balancing properties. In conclusion, when using multiple imputation in the inverse probability of treatment weighting context, MIte with the outcome included in the imputation model is the preferred approach

    Competing risks survival analysis applied to data from the Australian Orthopaedic Association National Joint Replacement Registry

    Get PDF
    BACKGROUND AND PURPOSE: The Kaplan-Meier (KM) method is often used in the analysis of arthroplasty registry data to estimate the probability of revision after a primary procedure. In the presence of a competing risk such as death, KM is known to overestimate the probability of revision. We investigated the degree to which the risk of revision is overestimated in registry data. PATIENTS AND METHODS: We compared KM estimates of risk of revision with the cumulative incidence function (CIF), which takes account of death as a competing risk. We considered revision by (1) prosthesis type in subjects aged 75–84 years with fractured neck of femur (FNOF), (2) cement use in monoblock prostheses for FNOF, and (3) age group in patients undergoing total hip arthroplasty (THA) for osteoarthritis (OA). RESULTS: In 5,802 subjects aged 75–84 years with a monoblock prosthesis for FNOF, the estimated risk of revision at 5 years was 6.3% by KM and 4.3% by CIF, a relative difference (RD) of 46%. In 9,821 subjects of all ages receiving an Austin Moore (non-cemented) prosthesis for FNOF, the RD at 5 years was 52% and for 3,116 subjects with a Thompson (cemented) prosthesis, the RD was 79%. In 44,365 subjects with a THA for OA who were less than 70 years old, the RD was just 1.4%; for 47,430 subjects > 70 years of age, the RD was 4.6% at 5 years. INTERPRETATION: The Kaplan-Meier method substantially overestimated the risk of revision compared to estimates using competing risk methods when the risk of death was high. The bias increased with time as the incidence of the competing risk of death increased. Registries should adopt methods of analysis appropriate to the nature of their data.Marianne H. Gillam, Philip Ryan, Stephen E. Graves, Lisa N. Miller, Richard N. de Steiger and Amy Salte

    Dyspnoea in patients receiving noninvasive ventilation for acute respiratory failure: prevalence, risk factors and prognostic impact: A prospective observational study

    Get PDF
    Dyspnoea is a frequent and intense symptom in intubated patients, but little attention has been paid to dyspnoea during noninvasive mechanical ventilation in the intensive care unit (ICU).The objectives of this study were to quantify the prevalence, intensity and prognostic impact of dyspnoea in patients receiving noninvasive ventilation (NIV) for acute respiratory failure (ARF) based on secondary analysis of a prospective observational cohort study in patients who received ventilatory support for ARF in 54 ICUs in France and Belgium. Dyspnoea was measured by a modified Borg scale.Among the 426 patients included, the median (interquartile range) dyspnoea score was 4 (3-5) on admission and 3 (2-4) after the first NIV session (p=0.001). Dyspnoea intensity ≥4 after the first NIV session was associated with the Sequential Organ Failure Assessment Score (odds ratio (OR) 1.12, p=0.001), respiratory rate (OR 1.03, p=0.032), anxiety (OR 1.92, p=0.006), leaks (OR 2.5, p=0.002) and arterial carbon dioxide tension (OR 0.98, p=0.025). Dyspnoea intensity ≥4 was independently associated with NIV failure (OR 2.41, p=0.001) and mortality (OR 2.11, p=0.009), but not with higher post-ICU burden and altered quality of life.Dyspnoea is frequent and intense in patients receiving NIV for ARF and is associated with a higher risk of NIV failure and poorer outcome

    High Burden of Non-Influenza Viruses in Influenza-Like Illness in the Early Weeks of H1N1v Epidemic in France

    Get PDF
    BACKGROUND: Influenza-like illness (ILI) may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens. OBJECTIVES: During the early weeks of the 2009-2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms. METHODS: H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire. RESULTS: From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5%) were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9%) were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%), followed by parainfluenza viruses (24.2%) and adenovirus (5.3%). 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens. CONCLUSION: Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management

    Predicting microbiologically defined infection in febrile neutropenic episodes in children : global individual participant data multivariable meta-analysis

    Get PDF
    BACKGROUND: Risk-stratified management of fever with neutropenia (FN), allows intensive management of high-risk cases and early discharge of low-risk cases. No single, internationally validated, prediction model of the risk of adverse outcomes exists for children and young people. An individual patient data (IPD) meta-analysis was undertaken to devise one. METHODS: The 'Predicting Infectious Complications in Children with Cancer' (PICNICC) collaboration was formed by parent representatives, international clinical and methodological experts. Univariable and multivariable analyses, using random effects logistic regression, were undertaken to derive and internally validate a risk-prediction model for outcomes of episodes of FN based on clinical and laboratory data at presentation. RESULTS: Data came from 22 different study groups from 15 countries, of 5127 episodes of FN in 3504 patients. There were 1070 episodes in 616 patients from seven studies available for multivariable analysis. Univariable analyses showed associations with microbiologically defined infection (MDI) in many items, including higher temperature, lower white cell counts and acute myeloid leukaemia, but not age. Patients with osteosarcoma/Ewings sarcoma and those with more severe mucositis were associated with a decreased risk of MDI. The predictive model included: malignancy type, temperature, clinically 'severely unwell', haemoglobin, white cell count and absolute monocyte count. It showed moderate discrimination (AUROC 0.723, 95% confidence interval 0.711-0.759) and good calibration (calibration slope 0.95). The model was robust to bootstrap and cross-validation sensitivity analyses. CONCLUSIONS: This new prediction model for risk of MDI appears accurate. It requires prospective studies assessing implementation to assist clinicians and parents/patients in individualised decision making

    External validation, update and development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre-eclampsia) protocol.

    Get PDF
    Background: Pre-eclampsia, a condition with raised blood pressure and proteinuria is associated with an increased risk of maternal and offspring mortality and morbidity. Early identification of mothers at risk is needed to target management. Methods/design: We aim to systematically review the existing literature to identify prediction models for pre-eclampsia. We have established the International Prediction of Pregnancy Complication Network (IPPIC), made up of 72 researchers from 21 countries who have carried out relevant primary studies or have access to existing registry databases, and collectively possess data from more than two million patients. We will use the individual participant data (IPD) from these studies to externally validate these existing prediction models and summarise model performance across studies using random-effects meta-analysis for any, late (after 34 weeks) and early (before 34 weeks) onset pre-eclampsia. If none of the models perform well, we will recalibrate (update), or develop and validate new prediction models using the IPD. We will assess the differential accuracy of the models in various settings and subgroups according to the risk status. We will also validate or develop prediction models based on clinical characteristics only; clinical and biochemical markers; clinical and ultrasound parameters; and clinical, biochemical and ultrasound tests. Discussion: Numerous systematic reviews with aggregate data meta-analysis have evaluated various risk factors separately or in combination for predicting pre-eclampsia, but these are affected by many limitations. Our large-scale collaborative IPD approach encourages consensus towards well developed, and validated prognostic models, rather than a number of competing non-validated ones. The large sample size from our IPD will also allow development and validation of multivariable prediction model for the relatively rare outcome of early onset pre-eclampsia. Trial registration: The project was registered on Prospero on the 27 November 2015 with ID: CRD42015029349
    • …
    corecore